Part I: The pKa of H₃O⁺ and H₂O

1) What is the pK_a of H₃O⁺?

 $H_3O^+ + H_2O <==> H_3O^+ + H_2O$ $K_c = \frac{[H_3O^+] [H_2O]}{[H_3O^+] [H_2O]}$

Multiplying both sides by [H₂O] will give:

Noting that $K_c [H_2O] = K_a$ and $[H_3O^+]$ cancels out, we arrive at:

 $K_a = [H_2O] = 55.5 M$

 $pK_a = -log 55.5 = -log 10^{1.74} = -1.74$

2) What is the pK_a of H₂O?

 $H_2O + H_2O <==> H_3O^+ + OH^ K_c = \frac{[H_3O^+][OH^-]}{[H_2O][H_2O]}$

Multiplying both sides by [H₂O] will give:

Noting that $K_c [H_2O] = K_a$ and $[H_3O^+] [OH^-] = K_w$, we arrive at:

 $K_{a} = \frac{K_{w}}{[H_{2}O]}$ $K_{a} = (1.00 \times 10^{-14} \div 55.5) = (10^{-14} \div 10^{1.74}) = 10^{-15.74}$ $pK_{a} = -\log 10^{-15.74} = 15.74$

3) How do H₃O⁺ and H₂O compare to each other in terms of acidic strength?

 $\Delta p K_a = 15.74 - (-1.74) = 17.48$

Conclusion: H_3O^+ is a stronger acid than H_2O is by a factor of $10^{17.48}$.

4) How do other acids and bases compare to these two?

a) An acid (such as HCl) with a pK_a less than -1.74 is always fully ionized in H₂O. These acids all level out to the pK_a of H₃O⁺.

b) Between the limits of $pK_a = -1.74$ (H₃O⁺) and 15.74 (H₂O), the extent of ionization is directly proportional to the ΔpK_a .

Part II: The Extent of Acid Base Reactions

Nature always favors the weaker acid/base pair.

Remember the definition of pK_a : $-log K_a$. The <u>lower</u> the pK_a , the <u>stronger</u> the acid.

Example #1

 $HCl + H_2O <==> H_3O^+ + Cl^-$

The pK_a of HCl = -7. The pK_a of H₃O⁺ = -1.74.

 $\Delta pKa = -7 - (-1.74) = -5.26$

This is an decrease in acid strength (from HCl to H_3O^+) by a factor of 1.82 x 10⁵. This reaction is running downhill thermodynamically. Result: HCl is fully ionized in water solution. It is a strong acid.

Example #2

 $HAc + H_2O <==> H_3O^+ + Ac^-$

The pK_a of HAc = 4.75. The pK_a of H_3O^+ = -1.74.

 $\Delta p K_a \ = \ 4.75 \ - \ (-1.74) \ = \ 6.49$

This is an increase in acid strength (from HAc to H_3O^+) by a factor 3.24 x 10⁷. This reaction is running uphill thermodynamically. Result: acetic acid is partially ionized in water solution. It is a weak acid.

Example #3

 $HCN + H_2O \iff H_3O^+ + CN^-$

The pK_a of HCN = 11. The pK_a of H₃O⁺ = -1.74.

 $\Delta p K_a = 11 - (-1.74) = 12.74$

This is an increase of acid strength (from HCN to H_3O^+) by a factor 5.50 x 10^{12} . This reaction is running uphill thermodynamically. Result: HCN is partially ionized in water solution. It is a weak acid.

Question: which is ionized more - 0.1 M HAc or 0.1 M HCN? Answer: The HAc since it has less of an uphill battle to ionize than the HCN does.

Example #4

 $Ac^- + H_2O \iff HAc + OH^-$

The pK_a of H_2O is 15.74. The pK_a of HAc is 4.75.

 $\Delta p K_a = 15.74 - 4.75 = 10.99$

This is an increase of acid strength (from Ac^{-} to HAc) by a factor 9.77 x 10^{10} . This reaction is running uphill thermodynamically. Result: Ac^{-} partially hydrolyzes in water. It forms a slightly basic solution.

Example #5

 Cl^- + H_2O <===> HCl + OH^-

The pK_a of H_2O is 15.74. The pK_a of HCl is -7.

 $\Delta p K_a = 15.74 - (-7) = 22.74$

This is an increase of acid strength (from H_2O to HCl) by a factor 5.50 x 10^{22} . This reaction is running uphill thermodynamically. Result: Cl^- does not hydrolyze in water. It forms a neutral solution.

Example #6

NaH + H₂O $\langle ==>$ H₂ + OH⁻

The pK_a of H_2O is 15.74. The pK_a of H_2 is 33.

 $\Delta p K_a = 15.74 - 33 = -17.26.$

This is a decrease of acid strength (from H_2O to H_2) by a factor 1.82 x 10¹⁷. This reaction is running downhill thermodynamically. Result: NaH reacts strongly with water, the H_2 escapes, leaving a basic solution.